Interaction of the human autoantigen p150 with splicing snRNPs.

نویسندگان

  • B J Blencowe
  • M Carmo-Fonseca
  • S E Behrens
  • R Lührmann
  • A I Lamond
چکیده

An important goal of studies on pre-mRNA splicing is to identify factors that mediate the snRNP-snRNP and snRNP-pre-mRNA interactions that take place in the spliceosome. The U4/U6 snRNP is one of the four snRNPs that are subunits of spliceosomes. A rare patient autoimmune serum (MaS serum) has recently been identified that specifically immunoprecipitates U4/U6 snRNP from HeLa cell extracts through recognition of a 150 kDa autoantigen (p150) (Okano and Medsger, Journal of Immunology, 146, 535-542, 1991). Here we show that in addition to U4/U6 snRNP, p150 can also be detected associated with 20 S U5, U4/U6.U5 and 17 S U2 snRNPs, but not with U1 snRNP. In each particle p150 is present in sub-stoichiometric levels relative to the major snRNP proteins. We show that MaS serum selectively immunoprecipitates a sub-population of U4/U6 snRNPs in which the m3G-cap structure is masked and that p150 is preferentially associated with U6 snRNA in the U4/U6 particle. Anti-p150 antibodies show widespread nucleoplasmic staining, excluding nucleoli, with an elevated concentration in coiled bodies. This changes to a discrete punctate pattern when cells are treated with alpha-amanitin. Both the cytological and biochemical data indicate that the p150 autoantigen is a snRNP-associated factor in vivo. We also present biochemical evidence confirming that assembly of U4/U6 and U5 snRNPs into a U4/U6.U5 tri-snRNP particle is an integral step in the spliceosome assembly pathway. Addition of the purified U4/U6.U5 tri-snRNP restores splicing activity to inactivated HeLa nuclear extracts in which splicing had been inhibited by specific depletion of either the U4/U6 or U5 snRNPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells

Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus ...

متن کامل

Theory on the Coupled Stochastic Dynamics of Transcription and Splice-Site Recognition

Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII) and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs). Here we propose a biophysically plausible initial theory of splicing th...

متن کامل

In vitro Interaction and Colocalization of HSV-1 ORF P with a Cellular Splicing Factor (SC35) Using Pulldown Assay

Herpes simplex virus type-1 (HSV-1) causes a variety of diseases in human. This virus is a neurotropic pathogen of human that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes including ICP34.5 control HSV-1 pathogenicity and ICP34.5 has been identified as HSV-1 virulence gene. Open reading frame P (ORF P) is also a HSV-1 gene that ...

متن کامل

Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway

BACKGROUND Small nuclear ribonucleoproteins (snRNPs), which are essential components of the mRNA splicing machinery, comprise small nuclear RNAs, each complexed with a set of proteins. An early event in the maturation of snRNPs is the binding of the core proteins - the Sm proteins - to snRNAs in the cytoplasm followed by nuclear import. Immunolabelling with antibodies against Sm proteins shows ...

متن کامل

Nuclear organization of splicing snRNPs during differentiation of murine erythroleukemia cells in vitro

Murine erythroleukemia (MEL) cells are erythroid progenitors that can be induced to undergo terminal erythroid differentiation in culture. We have used MEL cells here as a model system to study the nuclear organization of splicing snRNPs during the physiological changes in gene expression which accompany differentiation. In uninduced MEL cells, snRNPs are widely distributed throughout the nucle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 105 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1993